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Abstract. A good percentage of students, while learning how to pro-
gram for the first time in a higher education course, often write inelegant
code, i.e., code which is difficult to read, badly organized, not commented.
Writing inelegant code reduces the student’s professional opportunities,
and is an indication of a non-systematic programming style which makes
it very difficult to maintain (or even understand) the code later, even
by its own author. In this paper we present DrPython–WEB, a web
application capable to automatically extract linguistic, structural and
style-related features, from students’ programs and to grade them with
respect to a teacher-defined assessment rubric. The aim of DrPython–
WEB is to make the students accustomed to good coding practices, and
stylistic features, and make their code better. There are other systems
able to perform code analysis through quality measures: the novelty of
DrPython–WEB, with respect to such systems, is in that it analyzes also
linguistic and stylistic features.

Keywords: Teaching programming · Python · Feature extraction · Good
coding practices.

1 Introduction

One of the main tasks of a computer programming course is to allow the stu-
dents to reach an adequate level of skills, so to be able to produce well written
programs, well organized, commented, readable, possibly efficient. The difficulty
of accomplishing such a task is particularly felt in Higher Education in Com-
puter Science, as students in that area will become, in a relatively close future,
professionals with important responsibilities in private and public sectors [1, 3,
4].

Students’ skills to produce programs showing good or even high “quality” are
acquired through practice and are applied to various aspects of programming,
ranging from the capability to define suitable algorithms to solve a given prob-
lem, through to the ability to design a program and the relevant data structures,
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to practical coding abilities that allow a student to produce a readable program,
i.e. a program whose instructions are 1) textually formatted in a readable fash-
ion, 2) easy to interpret, as far as their purposes are concerned, and 3) as clearly
commented as possible.

Both learning and teaching of Computer Programming are challenging tasks,
when the traditional approach to education is used [5]. Hence, the availability
of web-based automated support can be of great value, especially in Higher
Education, where often direct interactions between a student who is solving a
programming task, and a teacher who could help, are not easily achievable [7],
especially in the case of Italian university courses where the student/tutor ratio
is very high. E.g., in our courses (at Sapienza University of Rome) the usual
number of students per teacher in the initial courses is 150, which is possibly
due to 150 being the maximum allowed number of students per teacher by law.

Many researchers have recognized the impact of the students’ programming
style on their grades and have developed systems to recognize stylistic features
of programs[14, 16, 18], which are usually mainly focused on programming con-
structs. We follow this line of research by considering also linguistic features to
better recognize if the program, considered as a written text, is readable and
easy to understand and to maintain.

Moreover, we want to use the results of our style/readability assessment as
a didactic tool to accustom students to write readable code. To this aim we
chose to use rubrics to automatically assess students’ submissions, like it has
been done for Appinventor[13, 2]. The teacher defines the rubric to focus the
students’ attention on the most important programming, stylistic and linguistic
features.

In this paper, we present a web-based system, DrPython–WEB, whose use
could help a student improve her/his coding skills, by pointing out and rec-
ognizing the “elegance” of the student’s code in an automated and real-time
fashion.

By “elegance” we mean a subset of the several qualities of a program, men-
tioned earlier, related to structure, readability and maintainability. On these
aspects DrPython–WEB focuses its program analysis, and evaluation. In partic-
ular, given a program, the analysis is performed on a set of features, extracted
from the program (see later), as well as on the good naming quality of the
identifiers (i.e., the names given by the programmer to certain structures of the
program, such as types, variables, and functions).

DrPython–WEB is clearly inspired to the DrScratch system[19] and other
rubric-based systems[13], which statically analyze the submitted Appinventor
programs to extract program features and highlight higher levels of competency
on different topics (e.g., usage of more complex data structures, complex condi-
tionals, parallelism etc.).

Similarly, DrPython–WEB measures the usage of many Python constructs
with the aim of recognizing more expert programmers, and produces a teacher-
defined rubric-based assessment to invite students to learn and to use the more
advanced Python constructs.
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Beside the focus on programming competency, we want also to accustom
students to write good-style code (modularized, readable, well documented).
During our lessons we use always a “describe first - implement later” development
methodology and with DrPython–WEB we want to assess both the expertise and
the style of the submitted homeworks.

The novelty of DrPython–WEB, w.r.t. other feature extraction systems [18],
is in its analysis of linguistic features, type of keywords used in the documen-
tation, their semantic distance from the exercise topics, use of self-explanatory
identifiers.

We developed DrPython–WEB with a twofold aim: on the one hand we would
like to encourage students to practice and improve their coding style; on the other
hand we wanted to support both student’s awareness and teacher’s assessment
procedures, by providing them with visual summaries of data, reporting the
elements on which the overall evaluation of the code was based.

We haven’t yet used the system in class but we are going to experiment with
it in the next courses. Therefore we cannot yet present a comprehensive analysis
of the actual effects of its use for the students and teachers.

So, in this paper we present the system, and its features, showing how we
used it on a relatively large dataset of programs (produced by students during
a recent edition of a course on Basics in Programming held at our University).
Such dataset is made of programs produced to solve tasks related to the several
mandatory homework requested during the course, and the solutions submitted
for final exams. The programs available spans 4 years and 2 parallel courses,
with 4 mandatory homeworks and 4 optional, for an average of 350 students a
year, and an approximate total of 10000 homework submissions and 1000 exam
submissions. These homework and exams, until now, have been graded w.r.t.
their correctness through unit tests. A small bonus was awarded to students
that implement faster and/or less intricate (with smaller cyclomatic complexity)
code. With DrPython–WEB we want to start awarding a bonus also to more
elegant code.

The main goals in this paper are then the following:

Goal 1: To show that DrPython–WEB can automatically extract the stylistic
features of a program, and assess their usage to push students towards a
better programming style.
We will see that DrPython–WEB is able to 1) perform an automatic check
of the hundreds of programs in our sample, 2) analyze, in such programs, the
coding qualities we associated above to “elegance”, and 3) express a quality
grade for each program.

Goal 2: To show how DrPython–WEB supports personalization of the assess-
ment depending on the teacher’s preferences, each stage in the course, or
just the specific assignment’s characteristics.
In this respect, we will see that the analysis performed by DrPython–WEB
can be configured by the teacher, who is able to finely-tune the assessment
by specifying in a rubric her/his preferences about the features to be taken
into consideration, and their weight in the computation of the overall quality
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grade. The metric for the overall grade is the result of the weights chosen by
the teacher for the rubric’s features. Notice that, as features are normally
difficult to normalize, so we usually award bonuses by first ranking the grades
obtained and then by selecting the highest performing 50% of them.
In particular, the possibility to configure many assessment rubrics allows the
teacher to adapt the analysis of a given batch of programs, depending on
the relevant characteristics of a given task, and/or the aspects to be taken
care of at a given point-in-time of the course.

We plan to add the DrPython–WEB rubric-based stylistic self assessment to
our Q2A-I system [6]. In Q2A-I students self-assess their python exercises, which
are tested with unit tests, and receive bonuses for faster solutions and/or for less
intricate programs (with lower cyclomatic complexity). In Q2A-I students par-
ticipate in a formative peer-assessment phase where they suggest each other how
to improve their algorithms by reading and commenting each other’s algorithm
descriptions.

We are still working on the analysis to understand if the already available
data, collected in the previous years, shows that the linguistics features are linked
to the exercise and exam grades (notice that in the previous years we have not
asked the students to write nice code because of the difficulty of automatically
checking for stylistic properties). No easy linear or monotonic relation seems to
arise from our initial analysis yet. This is expected, as the student’s population is
made of several groups of students with different skills and behaving differently.

In the following sections we will:

1. Present the software library DrPython, which we developed to provide core
functionalities for the analysis of a program: using these new functionalities
DrPython–WEB was developed.

2. Present the use of DrPython–WEB on a set of sample programs, in order to
show the characteristics of the system and see its potential application on
the field.

3. Present some conclusions, submitting that DrPython–WEB, although sub-
ject to further improvements, can be an effective means to help the students
to improve their coding style.

2 DrPython: feature extraction module

DrPython–WEB is based on the feature extraction library we developed for this
task (named DrPython). We chose to base the system on feature extraction
because features allow for an expandable and easy to understand definition and
description of assessment rubrics. Others have used feature extraction on Python
programs (e.g. [18]) to extract textual and structural features from programs.
To these type of features we add linguistic features (see below).

We developed the DrPython library to analyze the student’s program and
algorithm description to recognize/extract three types of features:
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– Code syntax features: the number of specific language constructs in the
program (functions, classes, super-classes of each class, methods, try-except,
list-comprehensions, if-then-else, generators, lambda, recursive functions, vari-
ables, arguments),

– Code quality measures:
• McCabe’s cyclomatic complexity [8], that captures how much a function

control flow is intricate,
• Halstead’s measures [9], that captures a function’s conceptual complexity

from its vocabulary size and number of operators used,
• Code smells [10], i.e., code structures that often imply bad coding prac-

tices.
– Linguistic features:

• Good identifiers, i.e., self-explanatory names that convey the meaning of
their function. This relieves the programmer from having to recall what
type of data is in a variable and what its place is in the algorithm, as
well as the action performed by a function/method,

• Good documentation practices i.e., using comments and doc-strings to
describe the reason for particular programming choices. This helps the
reader to better understand the meaning of the algorithm implemented.

• The usage of pertinent keywords related to the exercise description both
in comments/doc-strings or in the algorithm description. This allows
DrPython to automatically check (roughly) if the documentation is ad-
equate to the task.

The code syntax features are extracted/counted by means of the redbaron3

source code analysis library that allows to easily query the code structure for
specific constructs. Redbaron queries use a syntax similar to CSS selectors (as
it’s done in jQuery w.r.t. the DOM of HTML pages). This in turn will allow us
to easily expand in future the set of code syntax features extracted.

The code quality measures are computed by means of the radon4 library
which computes the code metrics: Mc’Cabe cyclomatic complexity of each func-
tion, Halstead measures, SLOC, comment count and other simple code metrics.

Finally, to extract the linguistic features DrPython uses the automatic term
extraction module pyATE [11] to select the 25 highest ranked keywords returned
by its Combo Basic algorithm [12], and the text analysis library spacy5 to an-
alyze the documentation/comments and the algorithm description. To decide if a
particular identifier used by a student is of good/medium/bad quality, DrPython
performs the following steps:

– It extracts the pertinent keywords with pyATE from the teacher’s exercise
task description

– It decomposes the identifier into its component words
– It compares the words (by means of spacy semantic similarity and the Word-

Net semantic network) to grade their similarity to the pertinent keywords

3 https://redbaron.readthedocs.io, accessed 1/11/21
4 https://radon.readthedocs.io, accessed 1/11/21
5 https://spacy.io, accessed 1/11/21
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– It classifies the identifier in the top/medium/bad group depending on hav-
ing its max similarity to a keyword above 90%, between 40% and 90% or
lower than 40%, respectively. We have initially chosen the thresholds to split
identifiers in the top/medium/bad classes as the 90% and 40% values, i.e. we
consider a very good identifier to be very similar to the exercise keywords, a
good identifier sufficiently similar, and a bad identifier rather dissimilar from
the keywords. A more detailed study of the data to find the best threshold
will follow.

DrPython can be used both as a stand-alone program, to be run from the
command line, or integrated in the DrPython–WEB web-based application de-
scribed below.

For example, with DrPython one could analyze many student files and collect
all extracted features as a CSV file and study, for example:

– How the extracted features correlate with each other or with other data
(exam grades or readability judgements manually collected)

– How different assessment rubrics will produce different grade distributions

To make the assessment rubrics easier to use, and to automate the submission
and assessment of the programs, we have developed the web-based application
(DrPython–WEB).

3 Dr.Python-WEB: The System

The DrPython–WEB system allows the teacher to define one or more assess-
ment rubrics to grade the submitted programs/algorithms depending on the
features extracted, in order to encourage students to use more readable Python
constructs, a better linguistic style, and to better modularize their code.

DrPython–WEB is a classic LAMP6 based web-application written in Python
where:

– The teacher defines assessment rubrics depending on the exercise and/or the
course phase.
We want to allow the teacher to define different rubrics in different phases of
the course (or even for specific exercises). This way the teacher would be free
to, for example, assign more weight to course topics/python constructs that
have been recently explained, or to python constructs that are particularly
effective to solve efficiently the specific exercise.

– The students submit their code to get the style assessment grade and com-
pare their results with each others’.

– The teacher has an overall view of the students’ leaderboard and a detailed
view of all submitted programs and assessment results, and thus has the
ability to finely tune the rubric in case the assessment is distorted, and
update the assessment.

6 LAMP=Linux, Apache, MySQL, PHP/Perl/Python
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Fig. 1. Assessment rubric that awards more points for lower cyclomatic complexity,
lower Halstead’s Effort and high percentage of good identifiers: see further explanations
in the following text.

Assessment rubrics are defined by the teacher by specifying what are the
features assessed, and what are their weights associated to given ranges of their
values.

In Fig. 1 we show an assessment rubric that awards more points to a lower
Halstead’s effort (’Effort’ in the figure), to a lower cyclomatic complexity, and to
a higher percentage of good identifiers depending on the ranges observed for their
values. Notice that, in general, each feature ranges over non-normalized interval
of values. We can imagine that a teacher would built a rubric like the one in
figure to spur students to: modularize their program into smaller less complex
functions (with lower cyclomatic complexity), to write more readable code (using
mainly self-explanatory identifiers), and with a less complex algorithm (with
lower Halstead’s effort).

Notice that an assessment rubric can assign different points to different ranges
of feature values extracted, as shown in the figure, where we show three different
ranges for the Halstead’s Effort measured. This way, the teacher could associate
to each feature a weight function with complex shape.

The teacher can update the rubric by either changing the ranges of applica-
tion or the points given for each feature/range rule or by adding/removing new
feature/range/points rules to the rubric.

As the features measured are normally heterogeneous, we plan to study the
distribution of the extracted features over our dataset to propose standardized
ranges to the teachers and help them during rubric definition.
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All the programs are made available to the other students after the submis-
sion deadline. After assessment the students’ results and programs are shown and
linked in the DrPython–WEB leaderboard, so that each student can compare
their program style with others, as shown in Fig. 2

Fig. 2. Leaderboard example, showing the features checked for this exercise and the
points assigned according to the previous assessment rubric. Notice that the only fea-
tures shown are those included in the assessment rubric.

4 Conclusions and future work

We have shown a novel library (DrPython) which extracts structural, quality and
linguistic features from the programs and documentation submitted by students.
DrPython is used within the novel DrPython–WEB application, that allows the
teacher to build assessment rubrics specific both to the point in time during the
course and/or to the specific exercise.

We plan to use the DrPython–WEB system on our next courses to collect
data on the student’s submissions and check that its usage improves the student’s
program quality.

This will allow us to see if the correlation between features and grades will
improve (and in what shape) when the system is in-place, with respect to the
data collected in earlier courses.
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We will try to detect cheating patterns (i.e., when students try to gain points
with simple strategies without actually improving their programming style) and
to make the feature extraction more robust/precise with respect to cheating.
Yet, we are convinced that the effort to “fool the teacher” could, in any case,
increase their technical programming skills.

Moreover, we plan to collect readability assessments from the students during
the course to study both how the exercise readability improves with time and how
the code readability perception of the students changes while they are learning.

From the collected data we intend to study if we can define a program read-
ability measure that takes into consideration the linguistic features also.

Finally, we intend to study how the readability of a program is related to its
grade, and/or to the grade received in the final lab-based exam. From our initial
analysis, it seems that a simple linear (or monotonic) relation between features
and grades is not evident. Thus, we are widening the number of processed pro-
grams to apply also clustering and/or ML approaches (which need more data
and time).
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