
Learning from Mistakes in Open Source
Software Course

Olzhas Zhangeldinov

Nazarbayev University, Astana, Kazakhstan
olzhas.zhangeldinov@nu.edu.kz

Abstract. Open Source Software development includes many peculiar-
ities, which may not be apparent at first sight. Committing to Open
Source projects may be a difficult task without former knowledge. This
paper describes the experience of a student that took a course on Open
Source Software. A lot of attention was paid to mistakes that were made
during the course, and a reflection on decisions was conducted.

Keywords: Open Source Software · Learning Experience · OSS Chal-
lenges.

1 Introduction

Open source projects are widely used in almost every software today since even
proprietary products depend on open source compilers, libraries, or tools. A pro-
grammers’ involvement in the open source community is an important part of
their learning. This paper describes my experience gained attending the Open
Source Software course taken in the Spring semester of 2020-2021 academic year
in Nazarbayev University.

1.1 Course Description

The learning outcomes of the course belong to one of these two parts - theoretical
and practical. Theoretical is understanding the concept of open source software
and its aspects, while practical is learning how to participate in the development
of open source software. The theoretical part included lectures about the history
and current state of open source software. It was assessed by quizzes, a mid-
term exam, and a short paper about a specific topic related to the Open Source
Software course. The contribution part implied that students would choose their
role and project, commit to the project and submit deliverables about the work
done. The deliverables included short weekly reports about commits and pull
requests. Besides the weekly reports, the students had to deliver more detailed
reports with their reflections about the work done and decisions.
This paper evolved from the final report written for the course. The work in-
cludes more details about the course and its contribution part. This part caused



2 O. Zhangeldinov

serious struggles for me and other students, and the reasons for this will be
discussed in this paper. A thorough self-assessment was made at the end of the
course, and the main mistakes were identified. The paper will demonstrate the
mistakes and describe lessons learned from these mistakes.

1.2 Background and Expectations

When the course started, my background in software engineering included the
development of HTTP servers and web applications. The projects I had built
heavily depended on open source packages. Therefore, I was already familiar
with the packages’ installation procedures and bug reporting. Additionally, I
had worked on projects that involved several other people. Hence, I also had the
experience of software development in a team before the course started.
Contributing to the open source community attracted me since I started using
the open source packages. These packages make a great impact on software
engineering, and being a part of such world-changing technologies was a very
attractive perspective.
I had the skills needed for the project development, but I was completely new to
contributing to the open source community. Therefore, I expected the course to
help me understand and apply conventions specific to the development of Open
Source projects. Learning these conventions would help me to commit to the
projects later, which was a good motivation to take the course.

2 Project Selection

The selection of a project to commit to, despite my expectations, was a very
challenging task. I did not complete this task as successfully as I wanted to. The
reasons for the bad project choice will be discussed in later parts of the paper.
At the beginning of the university course, the lectures included generic rules
about choosing a good project to contribute. They intended to select a project
with an easy way to have the contribution accepted. Such projects would al-
low passing the practical part of the course, where students needed to report
on their commits to their selected projects. Lectures informed students about
several metrics that would help them to identify a project that needs intense
development. The metrics included the number of commits, frequency of closing
pull requests, number of contributors, and, finally, maturity of the project.
The project selection process consisted of two stages. For the first selection, we
needed to identify five possible options, and for the second, after a week to weigh
our decisions, we had to pick one as a final choice. The first decision took into
account judgemental factors presented during lectures before the selection. After
receiving additional information the following week, we could change our final
decision. This two-staged process had a positive impact on the project selection
experience. During the period between the stages, I could assess the choices more
mindfully and resolve possible hesitations.



Learning from Mistakes in Open Source Software Course 3

2.1 The First Selection

As the first stage of our selection, the students selected five projects as the first
choice and four other possible options. I decided that I should include projects
with different motivations, sizes, and familiarity. The reason for this was the
initial uncertainty about the course. I planned to obtain more information about
the project selection from lectures later and was not restrictive to myself in the
project selection at the time. However, I tried to pick projects with the best
numbers for the metrics given above.

Laravel As the first choice, I picked the project I wanted to commit to the
most because I had already been its passive user and planned to contribute
there. Thus, I chose the Laravel [3] project, which is a back-end framework for
web servers. I was the most familiar with this project amongst other options.
Moreover, I was interested in this project the most because of my wide usage of
the package in several projects. Four other options were new projects on GitHub
that I had not been familiar with before. I chose projects with an increasing level
of difficulty. Therefore, I could find a balance between an interest in learning and
a possibility of merging my commits.

NextCloud Nextcloud [1] is an application to store and manage files on the
cloud. The project was written in already familiar for me PHP [14] and JavaScript
[15]. This project would be a good option if I decided to conduct more research
with comfortable programming languages.

Graphana As the next level of difficulty, I included Graphana [2]. This project
specifies on visualization of large volumes of data. The main focus of this project
is a web representation using TypeScript [16]. The server-side computations are
made with Golang [17]. I learned TypeScript and had experience with Golang,
so I considered this as a good option.

Zola I was eager to use Rust [18] language because I considered it a promising
language, which includes many features I liked. However, writing projects in Rust
is a challenging task because the language is low-level. Therefore, I chose a small
project named Zola [4], which is a static website generator. I had some experience
with Webpack, so I found this project not very difficult to understand. On the
other side, I would need to learn Rust a lot. Therefore, I needed to consider the
drawbacks of this option before choosing.

Nushell Another project written in Rust is Nushell [5]. It is the Linux shell
interface with an improved user interface. This project was the most difficult to
learn. Not only was I not proficient enough for the Rust language, but also I
had never built a command line. I included this in case that there would not be
enough things to learn in other projects.



4 O. Zhangeldinov

2.2 Final Decision

The course lectures, besides other hints, advised choosing relatively new projects
with enough contributors and active daily work. The projects were compared to
each other, focusing on these details. The comparative table (Table 1) illustrates
the differences between the projects. I tried to pick projects with as many ac-

Table 1. Comparison of open source projects from the first choice.

Project name Number of commits closed PR frequency Maturity Number of contributors

Laravel 32,000 7 per day 8 years 2600
NextCloud 60,000 9 per day 8 years 785
Graphana 32,000 13 per day 7 years 1590
Zola 1600 1 per week 4 years 265
Nushell 3500 3 per week 2 years 261

tivities as possible. However, projects with high activity are also very mature
projects. Lectures warned about low activity in projects with a long lifetime,
and firstly I considered Zola and Nushell as good options. Nevertheless, their
frequency of closed pull requests was drastically lower than in old projects. For
the practical part of the course, students had to write weekly reports about the
work done, preferably commit every week, and interact with the community. I
was afraid that the regularity of several PRs per week would not guarantee that
my requests would be closed before the weekly report submission. Neither did
it assure enough communication for the report. Therefore, I ended up excluding
relatively new projects from my options.
The most mature projects left were Laravel, NextCoud, and Graphana. Despite
their distinctions in each metric, these projects were quite similar. All the num-
bers were far more than acceptable for each project. Therefore, such a change in
these metrics would not affect a student’s experience as a contributor. Finally, I
decided to choose Laravel, because I was the most familiar with it. It would be
easier for me to find tasks to complete since I was using the framework in real
projects, while NextCloud and Graphana would require me to do more research
about their usage.

3 Project Description

3.1 Governance

The leadership model of Laravel is ”Benevolent Dictator” with Taylor Otwell [6]
playing the most influential role in the project development. He decides on what
features to include and the overall development path of the project.
There is also a group named The Laravel Framework [7], which includes core
developers of the project. They have designated roles and more weight on their
claims. Their work is not limited to the framework, and only 5 out of 30 the
most active Laravel contributors belong to the group [8].



Learning from Mistakes in Open Source Software Course 5

3.2 Community

The community is structured hierarchically so that the ideas flow from bottom
layers (passive, active users) to higher (core developers and then the maintainer).
Ideas are usually presented as pull requests because the community promotes
the addition of some proof of concept along with the suggestions. The following
feed of the pull request tracks discussions of an idea. Therefore, every step of
the contribution is performed at the GitHub repository.

3.3 Licence

The project is licensed under MIT license. It is a common choice for vendored
packages. The commercial use of the package is allowed, as well as the modifica-
tion for any purpose, and sharing the package (distribution). These are the most
common cases of usage, especially for web frameworks. These allowances let the
package spread in the community freely.

4 Technical Aspects

4.1 Architecture

The architecture of the framework is justified by the fact that PHP is an Object-
Oriented Language. Thus, the code is split based on classes, interfaces, and traits.
The higher-level division is modular. Each module contains independent logic
that can be used outside of the framework’s context by any software. The mod-
ules also contain specific classes consumed by a kernel of the framework (service
providers, contracts, console commands). The modules are exposed to a user via
Facades for neat usage.

4.2 Related Modules

I have done my work within specific modules and modified one module at a time.
The module choice was based on the complexity of the module. I tried to avoid
working with modules that implied using many PHP extensions and drivers for
other programs. For example, I decided not to modify the Eloquent module,
written for building Database queries.
The work I have done is related to several modules, namely Routing, Founda-
tion\Console, and Foundation\Auth.
The Routing module maps HTTP routes that come from a client to specific
controllers. The routing logic often uses a ”Route” Facade. The facades provide
methods for registering route patterns and mapping them to PHP Callables.
The Foundation namespace includes many submodules that have the same names
as most of the usual Laravel modules (Auth and Foundation\Auth). These sub-
modules, in contrast to basic modules, do not perform significant actions for a
request lifecycle. Instead, they shorten the time and amount of code a developer



6 O. Zhangeldinov

needs to perform frequent actions for most back-end servers.
Foundation\Console module contains console commands for automatic configu-
ration of the server. Most of them generate pre-defined stubs of code that contain
basic structure of a class, which is consumed by the framework. For instance, it
might be a fresh controller or a middleware.
Foundation\Auth module provides some shortcuts for users authentication and
resolving their restrictions.

Fig. 1. Package Diagram of Related Modules

4.3 Project Status

At the time of my project selection, the project had entered a soft freeze mode.
New features were rare to maintain the code base properly. This circumstance im-
posed additional challenges for a successful contribution to the project. I missed
the project status from my attention during the project selection. Therefore, I
was limited in the number of ways in which I could contribute to the project.
The soft freeze lasted the whole semester, and I had to do the work in a way
that I did not expect initially.
There were not many unsolved bugs either. Because developers focused their
attention on them instead of features, bugs did not usually wait for a day
before being solved. The persistent bugs were relevant to the interoperation
with databases (Redis, PostgreSQL, and Microsoft MySQL). I attempted solv-
ing them, but the tasks were too complicated for being completed within one
week.



Learning from Mistakes in Open Source Software Course 7

5 Role and Work Done

Initially, I chose a Developer role. After the first pull request, I realized that
the project paused accepting new features, and entered a soft-freeze mode. The
maintainer declined most of the proposals to save the stability of pre-release ver-
sions. Due to this, I started to look for bugs and missing features that intuitively
should be present. Therefore, at the end of the semester, I was playing the role
of Developer and Tester.

5.1 The First Commit: Minor Feature to Group Routes by a
Common Controller Class

For my first commit, I have implemented a minor feature. The feature was an
additional option for grouping routes in the Routing module. The option lets
a user to group routes by a common Controller class used. This solution was
inspired by Ruby on Rails because I found it helpful in some cases. I forked
the project, made a new branch, committed my changes to the branch, and
posted a pull request [9]. The work was minor and consisted of 5 code lines. The
maintainer declined the pull request because it was not important enough for
the soft-freeze status of the project.

5.2 Testing Modules and Bug Fix

Then I decided to switch my priorities in the development from generating new
ideas to testing the existing features. However, since the project has a large
community and the last version was in the soft freeze for a while, major bugs
were already fixed, and only bugs in specific cases could occur. I started with
testing different modules. I decided to test the Policy feature because it was
one of my favorite features. I found a bug in the code that generates a stub for
a new policy. The code is in the Foundation\Console module. Because of the
bug, duplicated lines in the stub did not collapse because regular expression did
not match Windows’ carriage return \r symbol in the line-feed. I attempted to
make the matching of the line-feed platform-independent [10]. However, another
contributor pointed out that my solution would break the behavior in projects
that import Laravel package with a git core.autocrlf option set to false. I tested
his proposed solution, copied the code, and made a pull request that was merged
in a few hours [11].

5.3 Adding Compatibility between Old and New Features

I realized that there were not many known bugs left in the project. I scanned
the recently merged pull request to find possible bugs there. I could not spot
any, but I found a recently added Routing method missing. The function allows
adding a custom callback, which is called when a model bound to the route is
not found in the database (e.g. users/1 - binds User with id = 1). When I was



8 O. Zhangeldinov

testing it, I decided that it should be compatible with resource method added a
long time ago. The resource method automatically defines a set of CRUD routes
for a model. I implemented a wrapper for the missing method used during the
building of resource routes. The decision was not a mistake, and the pull request
with this modification was merged in the latest version branch and released in
the next minor release [12].

5.4 Interaction with Community

There was little interaction with the community during my contribution pro-
cess. My first PR was declined by the maintainer a few hours after I posted
it. In this timeframe, only one contributor asked me a question about route
caching. I checked the functionality when they pointed it out and reported that
the caching worked as expected.
The feature also became merged very fast. There was not any following discus-
sion.
Most interactions with the community were during the submitting the bug fix.
However, this was not a full-fledged discussion since the contributor only pro-
vided a better code than me.
Therefore, a fast activity in the project might imply that there will not be a space
for communication. Probably, picking slower-paced development will result in a
more quality experience received from contributing to open source.

6 Lessons Learned

There are some lessons about Open Source Software that I took from contribut-
ing to the project. The contribution to the Open Source has many aspects. They
must be taken into account when trying to help to develop a project. The lessons
fall into several categories that embrace a specific detail of interacting with the
Open Source community. Most of the new information was from the mistakes
that I made because of a lack of experience. These lessons might guide new stu-
dents of the course to proper decisions. The decision might help them pass the
practical part of the course.

6.1 Identifying a Good Project to Contribute

One of the main mistakes was choosing a project without a need for active help. I
expected that I would commit changes that I needed personally for my projects.
My thought was that they would be helpful for others. Adding new features for
users sounded interesting to me. Especially when considering such a large project
as Laravel, thousands of projects depend on it. Laravel is developed very fast and
releases new major versions every several months. However, I was wrong when I
supposed that it would not be a problem to propose new features to the project.
I analyzed the number of contributors and the frequency of pull requests.
However, these factors were not enough for selecting the project in my case.



Learning from Mistakes in Open Source Software Course 9

Despite the high frequency of merges and many contributors, committing to
the project was a big challenge. I could observe the reasons could even before
I selected the project. However, I have learned it too late and decided not to
switch the project in the middle of the semester. My main mistake was the lack
of attention to specific details about the project.
The first and the most significant detail is the status of the project. Since I
started committing to the project in a soft-freeze mode, I had few chances of
merging and being helpful as a developer. The status of the project plays a big
role in choosing a project for contribution. The main reason is that if the project
does not accept any major changes, you will not be helpful as a developer.
The status of the project can be identified by recently closed pull requests.
Although I looked at the list of the pull request, I did not pay attention to its
content every time. However, those PRs contained important information that
can inform a reader about the project’s status. Many of the pull requests that
were proposed in the last month, were typically closed with the reply from Taylor
Otwell that proposals of new features are not accepted because they want to save
a good code maintainability [13].
With this experience of choosing the wrong project to contribute, I learned a
lesson to investigate deeper about whether the project needs my help in the
specific role or not.

6.2 Writing Pull Requests

After writing and reading some pull requests, I understood that it would be bet-
ter if your pull requests obeyed some basic rules that would help other people in
the community. One of the most important rules is the proportion of the number
of words in PR and the amount of changed code.
My first pull request contained a lot of words and redundant examples, although
the commit changed a very small portion of the source code. When I read other
pull requests and compared them to mine, I understood that it is very conve-
nient when you open a PR and can easily tell how many changes commits in
the pull request brought. It might be too troublesome for developers to open the
Changes section and scan all the code to get an estimate of the work done. Thus,
it is better to follow a good proportion between PR length and the number of
changes.
The proportion is specific for every community. Some projects encourage de-
velopers to write long PRs with all descriptions and comments, while Laravel
usually follows the format of a short message, without many details and exam-
ples.

6.3 Finding Tasks

Since the project did not accept most of the changes, my main work was to
search for any tasks that I could do. I was not an experienced developer in the
project, thus I did not understand complex parts of the code. Therefore, I needed
to find something simple and useful.



10 O. Zhangeldinov

After some weeks of trying, I understood the concept that should assist in finding
the tasks by yourself. Since no major changes were accepted, only minor fixes
and additions should be considered. However, if there is no repository of pending
tasks that should be completed, it might be even harder to understand what a
project needs.
However, I managed to bring a commit that was merged to the main branch.
The commit included the extension of a relatively new feature to an old method.
In other words, it made an intuitive connection between two features. I learned
from this that projects may often lack the intuitive connection between classes.
Commits that allow several features to work together are a good contribution
that does not conflict with project modes limiting the number of new features.
Therefore, I learned to adapt to the workflow that takes place in the project.
I think contributors should follow some general trends in project development.
This will make their commits more valuable, and get more chances to be merged.

7 Conclusion

Although I used to develop the project with help of the Open Source Software
course, I had not contributed to any of them before I took the course. The course
became a good motivation for taking the first steps in developing Open Source
community.
I chose a project that I felt attracted to and started doing commits, hopefully
being useful for the project. Some mistakes were made, which led to several
difficulties with deciding further actions. Nevertheless, it is important to adapt
to the environment and identify the feature that the project needed even in the
soft-freeze mode. Thus, the mistakes that were made during the course became
a good learning material for further contributions to Open Source Software.

References

1. Nextcloud Repository, https://github.com/nextcloud/server. Last accessed 5 Oct
2021

2. Graphana Repository, https://github.com/grafana/grafana. Last accessed 5 Oct
2021

3. Laravel Repository, https://github.com/laravel/framework. Last accessed 5 Oct
2021

4. Zola Repository, https://github.com/getzola/zola. Last accessed 5 Oct 2021

5. Nushell Repository, https://github.com/nushell/nushell. Last accessed 5 Oct 2021

6. Taylor Otwell GitHub page, https://github.com/taylorotwell. Last accessed 5 Oct
2021

7. Taylor Otwell GitHub page, https://github.com/laravel. Last accessed 5 Oct 2021

8. Laravel Contributors page, https://github.com/laravel/framework/graphs/contributors.
Last accessed 15 Apr 2021

9. [8.x] Route group for same controller, https://github.com/laravel/framework/pull/36213.
Last accessed 5 Oct 2021



Learning from Mistakes in Open Source Software Course 11

10. [8.x] Make user policy command fix (Windows),
https://github.com/laravel/framework/pull/36445. Last accessed 5 Oct 2021

11. [8.x] Make user policy command fix (Windows) - fixed version,
https://github.com/laravel/framework/pull/36464. Last accessed 5 Oct 2021

12. [8.x] Add resource missing option, https://github.com/laravel/framework/pull/36562.
Last accessed 5 Oct 2021

13. Response about soft-freeze, https://github.com/laravel/framework/pull/36213#issuecomment-
776738560. Last accessed 5 Oct 2021

14. Bakken, S.S., Suraski Z, Schmid E.: PHP Manual: Volume 1. iUniverse, Incorpo-
rated (2000)

15. Flanagan D.: JavaScript: the definitive guide. O’Reilly Media, Inc. (2006)
16. Bierman, G., Abadi, M., Torgersen, M.: Understanding typescript. In: European

Conference on Object-Oriented Programming, pp. 257—281. Springer, Berlin, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44202-9 11

17. Meyerson, J.: The Go Programming Language. In: IEEE Software, vol. 31, no. 5,
pp. 104–104, Sept.-Oct. (2014). https://doi.org/10.1109/MS.2014.127

18. Matsakis, N.D., Klock II, F.S.: The rust language. In: ACM SIGAda Ada Letters,
vol. 4, no. 3, pp. 103-–104, (2014)


