
How OSS Courses Prepare Developers for the
Tech Industry

Sagi Amangeldi

Nazarbayev University, Astana, Kazakhstan
sagi.amangeldi@nu.edu.kz

Abstract. In the rapidly advancing world of technology, the significance
of understanding the wider ecosystem of software development, especially
the open source community, is paramount. This paper reflects on the ex-
periences of participating in an Open Source Software (OSS) course at
Nazarbayev University during the Spring semester of 2021. Focusing on
engagement with the KISS Launcher, an open-source project for An-
droid devices, the study sheds light on the insights gained regarding the
software development lifecycle, community interactions, and problem-
solving tactics within the OSS realm. This involvement acts as a mi-
crocosm of the broader software engineering industry, offering a glimpse
into real-world challenges and equipping participants with not just tech-
nical skills, but an enriched understanding of collaborative dynamics and
culture. Key learnings include proficiency enhancement in GitHub, im-
proved communication acumen, technical prowess, especially in mobile
development, and an appreciation for beta testing, among others. The
paper underscores the pivotal role of OSS courses in bridging the gap
between academia and the tech industry, preparing budding developers
for the multifaceted world of software engineering.

Keywords: Open source software · Student experience · Computer en-
gineering culture.

1 Introduction

In today’s rapidly evolving technological landscape, software development is not
merely about mastering a specific language or tool; it’s about understanding the
broader ecosystem in which software projects live and breathe. This environment,
often dynamic and collaborative, plays a crucial role in shaping the practices,
strategies, and methodologies employed in the tech industry [1]. At the nexus
of this landscape is the open source community, a vast and intricate web of
developers, projects, and collaborators dedicated to the shared use, modification,
and distribution of software. Aspiring developers, aiming to immerse themselves
in the tech industry, often find a solid foundational experience in Open Source
Software (OSS) courses. Through my journey, I discovered that my involvement
with OSS not only equipped me with technical skills but also provided a deep
understanding of the culture, communication, and collaborative nuances that
define the world of software engineering.



2 Sagi Amangeldi

By delving into a real-world OSS project, I was able to gain firsthand in-
sights into the challenges, problem-solving tactics, and community interactions
that characterize the software development lifecycle. This experience, akin to
an experiential learning journey, enabled a smooth transition into a professional
software developer role. The similarities between the open source community’s
workings and the operations of software engineering companies became evident.
From managing complex problems, and interacting with a global community on
platforms like GitHub, to understanding the intricacies of project management
and bug reporting, the OSS course provided a microcosm of the broader software
engineering world.

This paper seeks to explore and elucidate the many ways in which engagement
with open-source projects through formal OSS courses prepares developers for
the challenges and opportunities of the tech industry based on my understanding
achieved by attending the Open Source Software course taken in the Spring
semester of 2021 at Nazarbayev University.

1.1 Course Description

The course’s learning outcomes can be classified into two categories: theoretical
knowledge and practical application. The former pertains to comprehending the
principles of Open Source Software, including its history and current landscape,
taught through lectures. Evaluation of this section was conducted via quizzes, a
midterm, and an in-depth paper on a relevant open source topic. On the other
hand, the practical aspect taught students how to actively engage in open source
development. For this, students had to select a project, take on a specific role,
make commitments to the project, and submit records of their contributions as
reports. Regular brief updates on their commits and pull requests were expected,
as were more comprehensive reports reflecting on their tasks and choices. This
document is an extension of the course’s concluding report, delving deeper into
the contribution section.

1.2 Motivation and Project Selection

The endeavor of project selection was anchored by two principal criteria. Firstly,
the essential was to select a project wherein the core concept was thoroughly
comprehensible. Secondly, it was important to ensure that my contribution could
substantially foster the advancement of the project. With a seasoned background
in JavaScript and Java, reinforced by an internship that involved web and mo-
bile application development, my preference naturally leaned toward projects
predominantly using these languages. This proficiency not only delineated my
expertise in front-end and mobile development but also emphasized the desir-
ability of projects aligning with these languages.

While my exploration did lead me to other open-source projects like Amaze-
FileManage [2], Travel Mate [3], and Mozilla BugBug [4], their suitability was
discounted owing to reasons ranging from a limited active contributor pool, as
seen in AmazeFileManage, to the overwhelming influx of new contributors in



How OSS Courses Prepare Developers for the Tech Industry 3

Mozilla BugBug, making meaningful contribution challenging. Additionally, the
intricate complexities inherent in some projects were beyond my current pro-
ficiency, further solidifying the chosen project’s alignment with my aspirations
and capabilities. The project I selected is called the KISS Launcher [5].

2 Description of the Project

The KISS launcher [6], an open-source application developed for Android devices,
exemplifies the embodiment of efficiency in design and functionality. Originating
from the development platform, GitHub, it has found its presence on eminent
app distribution platforms like Google Play Store and F-Droid.

The acronym ‘KISS’ normally is short for “Keep it Simple, Stupid"; the
KISS project uses KISS to mean “Keep it Simple and Stupid". This appellation
serves as a metaphorical representation of the launcher’s minimalistic design and
its intentional abstention from Internet connectivity. The launcher, adaptive in
nature, progressively aligns with user patterns, enhancing search efficiency. This
deviation from conventional, intricate launchers augments battery longevity and
boosts device performance. A salient feature of this application is its swift search
mechanism that spans across apps, contacts, and system settings. Furthermore,
collaborative contributions have enriched the launcher, offering an expanded
feature set that includes widget incorporation, instantaneous contact search,
and enhanced configuration options.

2.1 The Leadership Paradigm

The project leadership of the KISS project exhibits a predominantly monar-
chical structure. This is exemplified by the pivotal role assumed by Matthieu
Bacconnier (@Neamar) [7], the visionary and primary developer of the project.
Since inception(at the time of contribution), the project has seen 169 releases,
all orchestrated by Bacconnier. Quantitative insight into his contributions is ev-
ident from the 1,464 commits on GitHub, a number that starkly contrasts with
the subsequent highest contributor’s 127 commits (Fig.1). While Bacconnier re-
mains the linchpin of the project, a consortium of contributors aids in diverse
capacities such as bug resolution, testing, ideation, and linguistic translation.
Notwithstanding, certain operational facets exhibit a democratic distribution
amongst the project’s stalwarts. Ancillary tasks like app uploads to distribution
platforms and linguistic translation manifest a decentralized approach.

2.2 Governance Protocols

The KISS project embraces an inclusive ethos, welcoming contributors irre-
spective of their pedigree. While entry barriers are minimal, authority within
the community is contingent upon one’s contribution magnitude. Unlike rigidly
structured projects like Linux [8], KISS mirrors the organic hierarchy observed
in entities like the Apache group [9]. Role delineations within the community are
reflective of the responsibilities they assume.



4 Sagi Amangeldi

Fig. 1. Top contributors’ commits.

2.3 Technical Dimensions

Predominantly scripted in Java (98.4%) with a marginal Python (1.3%) contri-
bution, the KISS project aligns with the AGPLv3+ [10] copylefted libre software
directive, underscoring open access and modification liberties. The architectural
foundation was laid three years ago, with subsequent iterations primarily focus-
ing on enhancements and bug resolutions. Its compactness and speed, indicative
of an efficient structural design and algorithmic formulation, may present com-
prehension challenges for novices in Android development. The project supports
20 languages and for translation, this project uses the web tool ‘weblate.com’
[11].

3 Role and Work Done

3.1 Initial Contributions

Upon embarking on this project, my primary objective was the successful com-
pletion of the project rather than a specific role. Opportunities presented them-
selves for code development and requirement engineering in other tasks. However,
fortuitously, my responsibilities aligned with beta testing. I was privileged to be
a part of the beta test group, consisting of 20 members, which evaluated version
3.15.3 [12] of the software application. My consistent, daily assessments yielded



How OSS Courses Prepare Developers for the Tech Industry 5

an issue pertaining to the keyboard [13], which remains unresolved as of this
writing. Also, evidence of my observations was corroborated by a video link.

Subsequent to my initial feedback, version 3.15.4 was launched. Post-update,
the keyboard issue persisted, accompanied by two additional glitches: a malfunc-
tioning ’back’ button [14] and a UI incongruence [15]. A pull request addressing
this matter was later received (Fig. 2).

Fig. 2. Initial accepted pull request.

Further scrutiny revealed another issue concerning an invisible application
icon [16]. An additional discrepancy was identified in the incorporation of icon
packs, leading to application crashes. This issue has been duly reported but
remains pending review [17].

3.2 Other Contributions

In the description of the project, there was an expressed need for linguistic as-
sistance within the project. Beyond my primary responsibilities, I facilitated the
project by rectifying translation issues and addressing complex string anomalies.
Initial evaluations indicated that the Russian translation was incomplete, with
merely 68% accuracy. After a two-week collaboration, we achieved comprehen-
sive translation [18]. Figure 3 serves as verification.

Drawing from my expertise in Russian translation, I spearheaded the trans-
lation of the project into Kazakh to cater to a wider audience [19].

3.3 Conclusion of Contributions

In concluding this discourse, I wish to elucidate the profound insights and knowl-
edge I have garnered throughout the duration of this course. Engaging with Open
Source Software (OSS) projects proved to be a stimulating experience. My en-
thusiasm for the work was consistent, as evidenced by my proactive involvement
from the outset.

Over the subsequent 2.5 months, I have contributed to the KISS project
encompasses 31 commits within this timeframe [20]. These contributions span



6 Sagi Amangeldi

Fig. 3. weblate.org detailing translation history.

across addressing 5 bug reports, rectifying 1 crash, incorporating 3 enhance-
ments, proffering 4 supportive remarks to fellow contributors, making 3 endeav-
ors to resolve longstanding bug issues, elevating the Russian translation from
68%, and effectuating a comprehensive translation along with the implementa-
tion of string functions for the Kazakh language.

In a reflective analysis of the KISS project’s contributors ranking, as por-
trayed in Figure 5, I am positioned at the 15th rank [20]. While I acknowledge
that such rankings may not encapsulate the full extent of one’s contributions,
securing the 15th rank amongst 195 contributors within a span of 2.5 months
undeniably stands as a noteworthy accomplishment in my scholarly journey.

4 Lessons learned

Participation in Open Source Software (OSS) projects can be construed as a ro-
bust pedagogical tool that enables students to hone their technical competencies.
Through my immersion in this domain, I discerned that engagement with OSS
serves as a pivotal catalyst. The course elucidated the intricate processes under-
lying the conception and execution of large-scale projects, strategies for effective
communication within OSS initiatives, the nuances of making meaningful contri-
butions, and adeptly navigating technical impediments. My satisfaction with the
project selection was a testament to the dividends of the dedication expended
throughout the duration of the course.

Furthermore, it warrants emphasis that the initial project selection can pro-
foundly influence the trajectory of a contributor’s future endeavors, given that



How OSS Courses Prepare Developers for the Tech Industry 7

Fig. 4. Commits on the KISS project.

the inaugural forays into the OSS sphere are central. Identifying a project com-
plemented by a conducive environment and collaborative contributors is illus-
trative for those aspiring to make impactful contributions. I was fortuitously
aligned with a project characterized by an amicable lead and collaborative co-
contributors. For neophytes in the domain, it’s important to strike a balance be-
tween the zeal for unraveling novel technological facets pertinent to the project
and ensuring their contributions remain germane.

Adopting a perspective that mitigates potential challenges in OSS engage-
ment can be invaluable. Moreover, fostering a culture of inquiry and acknowl-
edging the inevitability of errors underpins the learning ethos of this course.

In reflection, I wish to underscore the principal domains wherein I witnessed
considerable enhancement:

GitHub Proficiency: While I had prior familiarity with GitHub, my engage-
ment deepened my understanding, elevating me to a more proficient user.

Communication Acumen: Collaborating with the project lead and an expan-
sive network of contributors enriched my insights into the dynamics of large-scale
project management and effective communication strategies within OSS frame-
works.

Technical Prowess: My technical repertoire expanded significantly. My en-
deavor to contribute as a code developer necessitated a deep dive into mobile



8 Sagi Amangeldi

development and Java, with a particular focus on Android and the architecture
of the KISS project. Additionally, my engagement with weblate.org bolstered my
proficiency with translation and string formulations. I grasped the intricacies of
string interconnections and the overarching translation protocols for expansive
projects like ours.

Additional Insights: I garnered an appreciation for Beta testing mechanisms,
and gained insights into licensing protocols, and their paramount significance.
I acquired foundational knowledge about sponsorship mechanisms, particularly
through platforms like liberapay.com. My exposure also encompassed the nu-
ances of contributing to updates, and understanding release processes, among
other salient learnings not exhaustively enumerated herein.

5 OSS Courses: Bridging Academia and Tech Industry

The dynamic and collaborative realm of software development transcends the
mere grasp of programming languages and tools. Central to this ecosystem is
the open source community, a confluence of developers, projects, and collabora-
tors, all geared towards the shared ideology of open, modifiable, and distributable
software. The relevance of Open Source Software (OSS) courses, such as the one
undertaken at Nazarbayev University in 2021, cannot be understated in this
context. These courses not only impart technical know-how but also acclimate
students to the multifaceted culture, communication methodologies, and collabo-
rative dynamics that permeate the software engineering arena. A deep dive into
OSS projects, as seen in the KISS Launcher experience, elucidates real-world
challenges and problem-solving strategies, while simultaneously highlighting the
essence of community interactions and software lifecycle intricacies. Such en-
gagement, emblematic of experiential learning, serves as a bridge, facilitating a
seamless transition from academic settings to professional developer roles. The
parallels between open source community operations and those of professional
software companies become increasingly palpable. Be it grappling with intri-
cate problems, interfacing with a diverse global community on platforms such as
GitHub, or mastering the subtleties of project management and bug reporting,
the realm of OSS provides an invaluable preparatory ground for emerging de-
velopers. With this foundation, aspirants are better positioned to navigate the
ever-evolving challenges and opportunities of the tech industry.

5.1 Personal Experience from Today’s Perspective

This contribution was made 2 years ago as a senior student. After graduation
from university, I worked remotely for 1 year as a web developer and now I
am working as a middle software engineer. Having actively participated in an
open-source project I was armed with a unique set of experiences that greatly
informed and enriched my contributions in a structured corporate setting. One



How OSS Courses Prepare Developers for the Tech Industry 9

of the first things that struck me was how integral the process of documenta-
tion was in the open-source realm. With developers from varying backgrounds
and time zones contributing to a project, clear and concise documentation be-
comes the unifying language. For instance, as was said above while working on
a particular module in the OSS project, I took the initiative to make a detailed
documentation of existing bugs. This wasn’t just about explaining what the
code did, but more about why certain decisions were made, potential pitfalls,
and how future contributors might extend or modify it. This forward-thinking
approach was something I carried with me into the software engineering role.
When our company decided to refactor a legacy system, my well-documented
code served as a roadmap, making the transition process smoother and reducing
the onboarding time for new team members.

Furthermore, the open-source ecosystem taught me that even the most minute
change in code is accompanied by a rigorous process. I vividly recall a situa-
tion where a simple update to a function, which I initially perceived as trivial,
required multiple layers of review and validation. Each line of code was scruti-
nized, and tested in multiple environments, and even the potential downstream
implications were assessed. Even though I did not contribute as a coder, this
meticulous approach was something I deeply internalized. Later, when working
on a critical feature at the software company, I instigated a thorough review
and testing protocol, ensuring that our deployment was robust and free from
unforeseen repercussions.

Moreover, the iterative process of open-source contribution, where peer re-
views are fundamental, sharpened my ability to write clear, maintainable code.
I recall a time in the open-source project when a simple feature that I suggested
had multiple revisions, with inputs from different contributors, leading to a more
efficient and cleaner version of the function. Later in the software company, dur-
ing a critical product launch, this skill proved instrumental. I was able to quickly
draft code that not only met the functional requirements but was also readily
understandable by my peers, reducing the lead time to product deployment.

6 Conclusion

In the rapidly evolving software development landscape, the open-source commu-
nity stands as a crucial touchstone for budding developers. OSS courses, like the
one at Nazarbayev University, play an instrumental role in bridging the theoreti-
cal world of academia and the hands-on environment of the tech industry. These
courses immerse students in the ethos of collaborative development, underscoring
the significance of community interactions and software life cycle intricacies. Per-
sonal experiences, such as those shared, underscore the importance of thorough
documentation, rigorous code review, and the iterative process foundational to
open-source contributions. These attributes, cultivated through active partici-
pation in OSS projects, translate seamlessly into the corporate world. In this
setting, well-documented codes become the backbone of efficient system tran-
sitions, while meticulous testing and review protocols ensure the robustness of



10 Sagi Amangeldi

deployments. Furthermore, the skills honed through continuous peer reviews in
the OSS environment lead to the creation of clear, maintainable code, expediting
the product deployment cycle in professional settings. In essence, the open-source
realm offers a comprehensive preparatory platform, equipping emerging devel-
opers with the necessary tools and perspectives to thrive in the ever-adaptive
tech industry.

Acknowledgements. Professor Antonio Cerone was a lecturer at the university
course introducing Open Source.

References

1. Lundell, B., Persson, A., Lings, B.: Learning through practical involvement in the
OSS ecosystem: experiences from a masters assignment. In: Feller, J., Fitzgerald,
B., Scacchi, W., Sillitti, A. (eds.) OSS 2007. ITIFIP, vol. 234, pp. 289–294. Springer,
Boston, MA (2007). https://doi.org/10.1007/978-0-387-72486-7_30

2. AmazeFileManager Repository. https://github.com/TeamAmaze/AmazeFileManager.
Accessed 25 Jan 2021

3. Travel Mate Repository. https://github.com/project-travel-mate/Travel-Mate. Ac-
cessed 25 Jan 2021

4. Mozilla BugBug Repository. https://github.com/mozilla/bugbug. Accessed 25 Jan
2021

5. KISS Launcher Official Site. https://kisslauncher.com/. Accessed 25 Jan 2021
6. KISS Launcher Repository. https://github.com/Neamar/KISS. Accessed 25 Jan

2021
7. Matthieu Bacconnier GitHub page. https://github.com/Neamar. Accessed 25 Jan

2021
8. Linux Official Site. https://www.linux.org/. Accessed 25 Jan 2021
9. Apache Official Site. https://www.apache.org/. Accessed 25 Jan 2021
10. KISS License File. https://github.com/Neamar/KISS/blob/master/LICENSE.

Accessed 25 Jan 2021
11. Weblate - Web-based continuous localization. https://weblate.com. Accessed 25

Jan 2021
12. KISS Launcher, Pre-release of 3.15.3 version.

https://github.com/Neamar/KISS/releases/tag/v3.15.3
13. Sagi Amangeldi: Keyboard issue. https://github.com/Neamar/KISS/issues/1662
14. Sagi Amangeldi: ’Back’ button issue. https://github.com/Neamar/KISS/issues/1664
15. Sagi Amangeldi: Colors are not centered. https://github.com/Neamar/KISS/issues/1671
16. Sagi Amangeldi: Invisible icon of one application in the favorites.

https://github.com/Neamar/KISS/issues/1684
17. Sagi Amangeldi: Crash happens when you change the icon pack.

https://github.com/Neamar/KISS/issues/1719
18. KISS Launcher - weblate.org page. https://hosted.weblate.org/changes/browse/kiss/strings/ru/?page=8
19. KISS Launcher - weblate.org page. https://hosted.weblate.org/changes/browse/kiss/strings/kk/?page=3
20. Sagi Amangeldi GitHub page.https://github.com/SagiAmangeldi
21. KISS Launcher, Contributors. https://github.com/Neamar/KISS/graphs/contributors


